
HandySpark Documentation
Release 0.0.1

Daniel Voigt Godoy

May 19, 2019

Contents

1 HandySpark 3
1.1 Bringing pandas-like capabilities to Spark dataframes! . 3
1.2 Google Colab . 3
1.3 Installation . 3
1.4 Documentation . 4
1.5 Quick Start . 4
1.6 Comments, questions, suggestions, bugs . 11

2 Indices and tables 13

i

ii

HandySpark Documentation, Release 0.0.1

Contents 1

https://travis-ci.org/dvgodoy/handyspark

HandySpark Documentation, Release 0.0.1

2 Contents

CHAPTER 1

HandySpark

1.1 Bringing pandas-like capabilities to Spark dataframes!

HandySpark is a package designed to improve PySpark user experience, especially when it comes to exploratory data
analysis , including visualization capabilities!

It makes fetching data or computing statistics for columns really easy, returning pandas objects straight away.

It also leverages on the recently released pandas UDFs in Spark to allow for an out-of-the-box usage of common
pandas functions in a Spark dataframe.

Moreover, it introduces the stratify operation, so users can perform more sophisticated analysis, imputation and outlier
detection on stratified data without incurring in very computationally expensive groupby operations.

Finally, it brings the long missing capability of plotting data while retaining the advantage of performing distributed
computation (unlike many tutorials on the internet, which just convert the whole dataset to pandas and then plot it -
don’t ever do that!).

1.2 Google Colab

Eager to try it out right away? Don’t wait any longer!

Open the notebook directly on Google Colab and try it yourself:

• Exploring Titanic

1.3 Installation

To install HandySpark from PyPI, just type:

pip install handyspark

3

https://colab.research.google.com/github/dvgodoy/handyspark/blob/master/notebooks/Exploring_Titanic.ipynb
https://pypi.org/project/handyspark/

HandySpark Documentation, Release 0.0.1

1.4 Documentation

You can find the full documentation here.

1.5 Quick Start

To use HandySpark , all you need to do is import the package and, after loading your data into a Spark dataframe, call
the toHandy() method to get your own HandyFrame :

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

from handyspark import *
sdf = spark.read.csv('./tests/rawdata/train.csv', header=True, inferSchema=True)
hdf = sdf.toHandy()

1.5.1 Fetching and plotting data

Now you can easily fetch data as if you were using pandas, just use the cols object from your HandyFrame :

hdf.cols['Name'][:5]

It should return a pandas Series object:

If you include a list of columns, it will return a pandas DataFrame.

Due to the distributed nature of data in Spark, it is only possible to fetch the top rows of any given HandyFrame.

Using cols you have access to several pandas-like column and DataFrame based methods implemented in Spark:

• min / max / median / q1 / q3 / stddev / mode

• nunique

• value_counts

• corr

• hist

• boxplot

• scatterplot

For instance:

hdf.cols['Embarked'].value_counts(dropna=False)

You can also make some plots:

from matplotlib import pyplot as plt
fig, axs = plt.subplots(1, 4, figsize=(12, 4))
hdf.cols['Embarked'].hist(ax=axs[0])
hdf.cols['Age'].boxplot(ax=axs[1])
hdf.cols['Fare'].boxplot(ax=axs[2])
hdf.cols[['Fare', 'Age']].scatterplot(ax=axs[3])

4 Chapter 1. HandySpark

http://dvgodoy.github.com/handyspark

HandySpark Documentation, Release 0.0.1

images/cols_plot.png

Handy, right (pun intended!)? But things can get even more interesting if you use stratify !

1.5.2 Stratify

Stratifying a HandyFrame means using a split-apply-combine approach. It will first split your HandyFrame according
to the specified (discrete) columns, then it will apply some function to each stratum of data and finally combine the
results back together.

This is better illustrated with an example - let’s try the stratified version of our previous value_counts:

hdf.stratify(['Pclass']).cols['Embarked'].value_counts()

Cool, isn’t it? Besides, under the hood, not a single group by operation was performed - everything is handled using
filter clauses! So, no data shuffling !

What if you want to stratify on a column containing continuous values? No problem!

hdf.stratify(['Sex', Bucket('Age', 2)]).cols['Embarked'].value_counts()

You can use either Bucket or Quantile to discretize your data in any given number of bins!

What about plotting it? Yes, HandySpark can handle that as well!

hdf.stratify(['Sex', Bucket('Age', 2)]).cols['Embarked'].hist(figsize=(8, 6))

images/stratified_hist.png

1.5.3 Handling missing data

HandySpark makes it very easy to spot and fill missing values. To figure if there are any missing values, just use isnull
:

hdf.isnull(ratio=True)

Ok, now you know there are 3 columns with missing values: Age, Cabin and Embarked. It’s time to fill those
values up! But, let’s skip Cabin, which has 77% of its values missing!

So, Age is a continuous variable, while Embarked is a categorical variable. Let’s start with the latter:

hdf_filled = hdf.fill(categorical=['Embarked'])

HandyFrame has a fill method which takes up to 3 arguments:

• categorical: a list of categorical variables

1.5. Quick Start 5

/images/cols_plot.png
/images/stratified_hist.png

HandySpark Documentation, Release 0.0.1

• continuous: a list of continuous variables

• strategy: which strategy to use for each one of the continuous variables (either mean or median)

Categorical variables use a mode strategy by default.

But you do not need to stick with the basics anymore. . . you can fancy it up using stratify together with fill :

hdf_filled = hdf_filled.stratify(['Pclass', 'Sex']).fill(continuous=['Age'],
→˓strategy=['mean'])

How do you know which values are being used? Simple enough:

hdf_filled.statistics_

There you go! The filter clauses and the corresponding imputation values!

But there is more - once you’re with your imputation procedure, why not generate a custom transformer to do that for
you, either on your test set or in production?

You only need to call the imputer method of the transformer object that every HandyFrame has:

imputer = hdf_filled.transformers.imputer()

In the example above, imputer is now a full-fledged serializable PySpark transformer! What does that mean? You can
use it in your pipeline and save / load at will :-)

1.5.4 Detecting outliers

Second only to the problem of missing data, outliers can pose a challenge for training machine learning models.

HandyFrame to the rescue, with its outliers method:

hdf_filled.outliers(method='tukey', k=3.)

Currently, only *Tukey’s* method is available (I am working on Mahalanobis distance!). This method takes an optional
k argument, which you can set to larger values (like 3) to allow for a more loose detection.

The good thing is, now we can take a peek at the data by plotting it:

from matplotlib import pyplot as plt
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
hdf_filled.cols['Parch'].hist(ax=axs[0])
hdf_filled.cols['SibSp'].hist(ax=axs[1])
hdf_filled.cols['Age'].boxplot(ax=axs[2], k=3)
hdf_filled.cols['Fare'].boxplot(ax=axs[3], k=3)

images/outliers.png

Let’s focus on the Fare column - what can we do about it? Well, we could use Tukey’s fences to, er. . . fence the
outliers :-)

hdf_fenced = hdf_filled.fence(['Fare'])

6 Chapter 1. HandySpark

https://en.wikipedia.org/wiki/Outlier#Tukey's_fences
/images/outliers.png

HandySpark Documentation, Release 0.0.1

Which values were used, you ask?

hdf_fenced.fences_

It works quite similarly to the fill method and, I hope you guessed, it also gives you the ability to create the corre-
sponding custom transformer :-)

fencer = hdf_fenced.transformers.fencer()

1.5.5 Pandas and more pandas!

With HandySpark you can feel almost as if you were using traditional pandas :-)

To gain access to the whole suite of available pandas functions, you need to leverage the pandas object of your
HandyFrame :

some_ports = hdf_fenced.pandas['Embarked'].isin(values=['C', 'Q'])
some_ports

In the example above, HandySpark treats the Embarked column as if it were a pandas Series and, therefore, you may
call its isin method!

But, remember Spark has lazy evaluation , so the result is a column expression which leverages the power of pandas
UDFs (provived that PyArrow is installed, otherwise it will fall back to traditional UDFs).

The only thing left to do is to actually assign the results to a new column, right?

hdf_fenced = hdf_fenced.assign(is_c_or_q=some_ports)
What's in there?
hdf_fenced.cols['is_c_or_q'][:5]

You got that right! HandyFrame has a very convenient assign method, just like in pandas!

It does not get much easier than that :-) There are several column methods available already:

• betweeen / between_time

• isin

• isna / isnull

• notna / notnull

• abs

• clip / clip_lower / clip_upper

• replace

• round / truncate

• tz_convert / tz_localize

And this is not all! Both specialized str and dt objects from pandas are available as well!

For instance, if you want to find if a given string contains another substring?

col_mrs = hdf_fenced.pandas['Name'].str.find(sub='Mrs.')
hdf_fenced = hdf_fenced.assign(is_mrs=col_mrs > 0)

1.5. Quick Start 7

HandySpark Documentation, Release 0.0.1

images/is_mrs.png

There are many, many more available methods:

String methods :

1. contains

2. startswith / endswitch

3. match

4. isalpha / isnumeric / isalnum / isdigit / isdecimal / isspace

5. islower / isupper / istitle

6. replace

7. repeat

8. join

9. pad

10. slice / slice_replace

11. strip / lstrip / rstrip

12. wrap / center / ljust / rjust

13. translate

14. get

15. normalize

16. lower / upper / capitalize / swapcase / title

17. zfill

18. count

19. find / rfind

20. len

Date / Datetime methods :

1. is_leap_year / is_month_end / is_month_start / is_quarter_end / is_quarter_start / is_year_end / is_year_start

2. strftime

3. tz / time / tz_convert / tz_localize

4. day / dayofweek / dayofyear / days_in_month / daysinmonth

5. hour / microsecond / minute / nanosecond / second

6. week / weekday / weekday_name

7. month / quarter / year / weekofyear

8. date

9. ceil / floor / round

8 Chapter 1. HandySpark

/images/is_mrs.png

HandySpark Documentation, Release 0.0.1

10. normalize

1.5.6 Your own functions

The sky is the limit! You can create regular Python functions and use assign to create new columns :-)

No need to worry about turning them into pandas UDFs - everything is handled by HandySpark under the hood!

The arguments of your function (or lambda) should have the names of the columns you want to use. For instance, to
take the log of Fare:

import numpy as np
hdf_fenced = hdf_fenced.assign(logFare=lambda Fare: np.log(Fare + 1))

images/logfare.png

You can also use multiple columns:

hdf_fenced = hdf_fenced.assign(fare_times_age=lambda Fare, Age: Fare * Age)

Even though the result is kinda pointless, it will work :-)

Keep in mind that the return type , that is, the column type of the new column, will be the same as the first column
used (Fare, in the example).

What if you want to return something of a different type?! No worries! You only need to wrap your function with the
desired return type. An example should make this more clear:

from pyspark.sql.types import StringType

hdf_fenced = hdf_fenced.assign(str_fare=StringType.ret(lambda Fare: Fare.map('${:,.2f}
→˓'.format)))

hdf_fenced.cols['str_fare'][:5]

Basically, we imported the desired output type - StringType - and used its extended method ret to wrap our lambda
function that formats our numeric Fare column into a string.

It is also possible to create a more complex type, like an array of doubles:

from pyspark.sql.types import ArrayType, DoubleType

def make_list(Fare):
return Fare.apply(lambda v: [v, v*2])

hdf_fenced = hdf_fenced.assign(fare_list=ArrayType(DoubleType()).ret(make_list))

hdf_fenced.cols['fare_list'][:5]

OK, so, what happened here?

1. First, we imported the necessary types, ArrayType and DoubleType , since we are building a function that returns
a list of doubles.

1.5. Quick Start 9

/images/logfare.png

HandySpark Documentation, Release 0.0.1

2. We actually built the function - notice that we call apply straight from Fare , which is treated as a pandas Series
under the hood.

3. We wrap the function with the return type ArrayType(DoubleType()) by invoking the extended method
ret.

4. Finally, we assign it to a new column name, and that’s it!

1.5.7 Nicer exceptions

Now, suppose you make a mistake while creating your function. . . if you have used Spark for a while, you already
realized that, when an exception is raised, it will be loooong , right?

To help you with that, HandySpark analyzes the error message and parses it nicely for you at the very top of the error
message, in bold red :

images/handy_exception.png

1.5.8 Safety first

HandySpark wants to protect your cluster and network, so it implements a safety whenever you perform an operation
that are going to retrieve ALL data from your HandyFrame , like collect or toPandas.

How does that work? Every time a HandyFrame has one of these methods called, it will output up to the safety limit ,
which has a default of 1,000 elements.

images/safety_on.png

Do you want to set a different safety limit for your HandyFrame ?

images/safety_limit.png

What if you want to retrieve everything nonetheless?! You can invoke the safety_off method prior to the actual method
you want to call and you get a one-time unlimited result.

images/safety_off.png

10 Chapter 1. HandySpark

/images/handy_exception.png
/images/safety_on.png
/images/safety_limit.png
/images/safety_off.png

HandySpark Documentation, Release 0.0.1

1.5.9 Don’t feel like Handy anymore?

To get back your original Spark dataframe, you only need to call notHandy to make it not handy again:

hdf_fenced.notHandy()

1.6 Comments, questions, suggestions, bugs

DISCLAIMER : this is a project under development , so it is likely you’ll run into bugs/problems.

So, if you find any bugs/problems, please open an issue or submit a pull request.

1.6. Comments, questions, suggestions, bugs 11

https://github.com/dvgodoy/handyspark/issues
https://github.com/dvgodoy/handyspark/pulls

HandySpark Documentation, Release 0.0.1

12 Chapter 1. HandySpark

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

	HandySpark
	Bringing pandas-like capabilities to Spark dataframes!
	Google Colab
	Installation
	Documentation
	Quick Start
	Comments, questions, suggestions, bugs

	Indices and tables

